KorMA Geometry

KorMA provides some geometry utilities.

Table of contents:

Angle

Angle is an inline class backed by a Float (when normalized being a ratio value between 0..1 instead of 0..PI2) that represents an angle and that can give additional type safety and semantics to code. It is stored as 0..1 to take advantage of this floating point range precision by using a Float. It can be constructed from and converted to degrees and radians and offer several utilities and operators related to angles:

Predefined angles:

val EPSILON = Angle.fromRatio(0.00001f)
val ZERO = 0.degrees
val QUARTER = 90.degrees
val HALF = 180.degrees
val THREE_QUARTERS = 270.degrees
val FULL = 360.degrees

Constructing from ratio, radians or degrees

You can construct an Angle from a ratio, radians or degrees.

val angle = Angle.fromRatio(0.5)
val angle = Angle.fromRadians(PI)
val angle = Angle.fromDegrees(180)

Or with numeric extension properties:

val angle = PI.radians
val angle = 180.degrees

Sine, Cosine & Tangent

You can get the cosine (X), sine (Y) or tangent (Y/X) with:

fun cos(angle: Angle, up: Vector2 = Vector2.UP): Float
fun sin(angle: Angle, up: Vector2 = Vector2.UP): Float
fun tan(angle: Angle, up: Vector2 = Vector2.UP): Float
val x = angle.cosine
val y = angle.sine
val tan = angle.tangent

Since in KorGE, coordinates are X+ right, and Y+ down, while typical Y+ is up, you can provide a parameter to cosine to specify the vector representing up or what value would have y for 90.degrees:

val x = angle.cosine(Vector2.UP_SCREEN)
val y = angle.sine(Vector2.UP_SCREEN)
val tan = angle.tangent(Vector2.UP_SCREEN)

There are two standard provided up vectors Vector2.UP (Y+ up) and Vector2.UP_SCREEN (Y+ down)

Normalizing angle

val Angle.normalized: Angle

Point and Matrix

Point and Matrix are classes holding doubles (to get consistency among targets including JavaScript) that represent a 2D Point (with x and y) and a 2D Affine Transform Matrix (with a, b, c, d, tx and ty). Point is a typealias of Vector2.

Vector2

Polar coordinates

You can construct a Vector2/Point from polar coordinates like:

Point.polar(Point(100, 100), 45.degrees, 50f, up = Vector2.UP_SCREEN) // (135.35535, 64.64466)
Point.polar(Point(100, 100), 45.degrees, 50f, up = Vector2.UP)        // (135.35535, 135.35535)
Point.polar(Point(100, 100), 45.degrees, 50f)                         // (135.35535, 135.35535)

The up vector is to determine where the up is, since by default it is going to be Y+ up, and that would be interpreted differently for drawn points in the case of KorGE since Y+ is down.

Vector3D and Matrix3D

Vector3D and Matrix3D are vectors and matrices of 4 components / 4 rows and 4 columns. They can also be used as 2, 3 and 4 component vectors, and 2x2, 3x3 and 4x4 matrices.

AABB3D & Sphere3D

data class Sphere3D(val origin: Vector3, val radius: Float) {
}

data class AABB3D(val min: Vector3 = Vector3(), val max: Vector3) {
    var minX: Float
    var minY: Float
    var minZ: Float
    var maxX: Float
    var maxY: Float
    var maxZ: Float
    val sizeX: Float
    val sizeY: Float
    val sizeZ: Float

    companion object {
        operator fun invoke(min: Float = Float.POSITIVE_INFINITY, max: Float = Float.NEGATIVE_INFINITY): AABB3D
        fun fromSphere(pos: IVector3, radius: Float): AABB3D
    }

    fun setX(min: Float, max: Float)
    fun setY(min: Float, max: Float)
    fun setZ(min: Float, max: Float)
    fun copyFrom(other: AABB3D)
    fun expandBy(that: AABB3D)
    fun expandToFit(that: AABB3D)
    fun expandedBy(that: AABB3D, out: AABB3D = AABB3D()): AABB3D
    fun intersectsSphere(sphere: Sphere3D): Boolean
    fun intersectsSphere(origin: Vector3, radius: Float): Boolean
    fun intersectsAABB(box: AABB3D): Boolean
    fun clone(): AABB3D
}

BoundsBuilder

BoundsBuilder is a class that allows to compute the bounds of a set of points without additional allocations.

class BoundsBuilder {
    fun reset()
    fun add(x: Double, y: Double): BoundsBuilder
    fun getBounds(out: Rectangle = Rectangle()): Rectangle
}

inline fun BoundsBuilder.add(x: Number, y: Number)
fun BoundsBuilder.add(p: IPoint)
fun BoundsBuilder.add(ps: Iterable<IPoint>)
fun BoundsBuilder.add(ps: IPointArrayList)
fun BoundsBuilder.add(rect: Rectangle)

PointArrayList

PointArrayList and PointIntArrayList can be used to store a list of points (pair of numbers) without allocating objects per element. You can later access x and y components with getX and getY or convert them into a list of Point for convenience that actually allocate objects.

class PointArrayList(capacity: Int = 7) {
    constructor(capacity: Int = 7, callback: PointArrayList.() -> Unit)
    constructor(points: List<IPoint>): PointArrayList
    constructor(vararg points: IPoint): PointArrayList

    val size: Int
    fun isEmpty(): Boolean
    fun isNotEmpty(): Boolean
    fun add(x: Double, y: Double)
    fun getX(index: Int)
    fun getY(index: Int)

    fun setX(index: Int, x: Double)
    fun setY(index: Int, y: Double)
    fun setXY(index: Int, x: Double, y: Double)
    fun reverse()
    fun sort()
}

fun PointArrayList.getPoint(index: Int): Point
fun PointArrayList.toPoints(): List<Point>
inline fun IPointArrayList.contains(x: Number, y: Number): Boolean

inline fun PointArrayList.add(x: Number, y: Number)
fun PointArrayList.add(p: Point)
fun PointArrayList.add(other: PointArrayList)
inline fun PointArrayList.setX(index: Int, x: Number)
inline fun PointArrayList.setY(index: Int, y: Number)
inline fun PointArrayList.setXY(index: Int, x: Number, y: Number)

Rectangle, Size, Anchor, Orientation and ScaleMode

data class Rectangle(
    var x: Double, var y: Double,
    var width: Double, var height: Double
) : MutableInterpolable<Rectangle>, Interpolable<Rectangle>, IRectangle, Sizeable

inline class Size(val p: Point) : MutableInterpolable<Size>, Interpolable<Size>, ISize, Sizeable

data class Anchor(val sx: Double, val sy: Double) : Interpolable<Anchor>

enum class Orientation(val value: Int) { CW(+1), CCW(-1), COLLINEAR(0) }

class ScaleMode {
    operator fun invoke(item: Size, container: Size, target: Size = Size()): Size

    companion object {
        val COVER: ScaleMode
        val SHOW_ALL: ScaleMode
        val EXACT: ScaleMode
        val NO_SCALE: ScaleMode
    }
}

As a sample combining most of these entities:

assertEquals(
    Rectangle(0, -150, 600, 600),
    Size(100, 100).applyScaleMode(
        Rectangle(0, 0, 600, 300),
        ScaleMode.COVER,
        Anchor.MIDDLE_CENTER
    )
)

Ray

The Ray class represents an infinite Line starting in a specific point and in a direction.

Constructing Ray

You can construct a Ray instance with:

val ray: Ray = Ray.fromTwoPoints(Point(1, 1), Point(3, 1)) // A ray starting at 1,1 and going to the right
val ray: Ray = Ray(point = Point(1, 1), direction = Vector2(1, 0)) // A ray starting at 1,1 and going to the right
val ray: Ray = Ray(point = Point(1, 1), angle = 0.degrees) // A ray starting at 1,1 and going to the right

The angle represents: 0 degrees is right, 90 degrees down, 180 degrees left, 270 degrees up.

Getting the starting point and the direction

You have point for the starting point, and direction (that is normalized) and angle representing the direction of the Ray.

val startPoint: Point = ray.point
val normalizedDirection: Vector2 = ray.direction // direction.length will be ~1
val angle: Angle = ray.angle // the angle: 0.degrees, right, 90.degrees down

Transforming and converting the Ray

You can apply an affine transformation to a Ray instance, and also we can convert it into a Line instance providing a length:

val newRay: Ray = ray.transformed(matrix) // Creates a new ray transformed
val line: Line = ray.toLine(10f) // Creates a new line going from the start point of the ray to its direction with a length of 10f

Checking for equality

Since Ray uses floating point, it provides a way to check for equality using an epsilon value as tolerance:

val isEquals: Boolean = ray1.isAlmostEquals(ray2, epsilon = 0.00001f)

Ray3D

class Ray3D {
	val pos: Vector3D
	val dir: Vector3D
	
    fun transformed(mat: Matrix3D): Ray3D
    
	companion object {
        fun fromPoints(p1: Vector3D, p2: Vector3D): Ray3D
    }
}

fun Ray3D.intersectRayAABox1(box: AABB3D) : Boolean 

EulerRotation


class EulerRotation {
    var x: Angle = 0.degrees,
    var y: Angle = 0.degrees,
    var z: Angle = 0.degrees

    companion object {
        fun toQuaternion(roll: Angle, pitch: Angle, yaw: Angle, out: Quaternion = Quaternion()): Quaternion
        fun toQuaternion(euler: EulerRotation, out: Quaternion = Quaternion()): Quaternion
    }

    fun toQuaternion(out: Quaternion = Quaternion()): Quaternion
    fun setQuaternion(x: Double, y: Double, z: Double, w: Double): EulerRotation
    fun setQuaternion(x: Int, y: Int, z: Int, w: Int): EulerRotation
    fun setQuaternion(x: Float, y: Float, z: Float, w: Float): EulerRotation

    fun setQuaternion(quaternion: Quaternion): EulerRotation
    fun setTo(x: Angle, y: Angle, z: Angle): EulerRotation
    fun setTo(other: EulerRotation): EulerRotation
    fun toMatrix(out: Matrix3D = Matrix3D()): Matrix3D
}

Quaternion

A Quaternion is a kind of vector that represent a rotation in a 3D space. It can be converted from/to EulerRotation, and can also be converted to/from a rotation Matrix4.

Constructing a Quaternion:

The Quaternion identity (no rotation) can be obtained with:

Quaternion.IDENTITY

You can also construct it from two vectors: an original vector plus a resultant vector after the rotation. For example:

Quaternion.fromVectors(Vector3.UP, Vector3.RIGHT) // A Quaternion that would rotate to the right

Code:

// https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles
class Quaternion {
    var x: Double = 0.0,
    var y: Double = 0.0,
    var z: Double = 0.0,
    var w: Double = 1.0

    val xyz: Vector3D

    constructor(xyz: IVector3, w: Double)

    val lengthSquared: Double
    val length: Double

    companion object {
        fun dotProduct(l: Quaternion, r: Quaternion): Double
        operator fun invoke(x: Float, y: Float, z: Float, w: Float): Quaternion
        operator fun invoke(x: Int, y: Int, z: Int, w: Int): Quaternion
        fun toEuler(q: Quaternion, out: EulerRotation = EulerRotation()): EulerRotation
        fun toEuler(x: Double, y: Double, z: Double, w: Double, euler: EulerRotation
        fun toEuler(x: Int, y: Int, z: Int, w: Int, euler: EulerRotation = EulerRotation()): EulerRotation
        fun toEuler(x: Float, y: Float, z: Float, w: Float, out: EulerRotation = EulerRotation()): EulerRotation
    }

    operator fun get(index: Int): Double
    inline fun setToFunc(callback: (Int) -> Double)
    fun setTo(x: Double, y: Double, z: Double, w: Double): Quaternion
    fun setTo(x: Int, y: Int, z: Int, w: Int): Quaternion
    fun setTo(x: Float, y: Float, z: Float, w: Float): Quaternion
    fun setTo(euler: EulerRotation): Quaternion
    fun setTo(other: Quaternion): Quaternion

    fun setEuler(x: Angle, y: Angle, z: Angle): Quaternion
    fun setEuler(euler: EulerRotation): Quaternion

    fun copyFrom(other: Quaternion): Quaternion

    operator fun unaryMinus(): Quaternion
    operator fun plus(other: Quaternion): Quaternion
    operator fun minus(other: Quaternion): Quaternion
    operator fun times(scale: Double): Quaternion

    fun negate()

    inline fun setToFunc(l: Quaternion, r: Quaternion, func: (l: Double, r: Double) -> Double)
    fun setToSlerp(left: Quaternion, right: Quaternion, t: Double, tleft: Quaternion = Quaternion(), tright: Quaternion = Quaternion()): Quaternion
    fun setToNlerp(left: Quaternion, right: Quaternion, t: Double): Quaternion
    fun setToInterpolated(left: Quaternion, right: Quaternion, t: Double): Quaternion
    fun setFromRotationMatrix(m: Matrix3D): Quaternion
    fun normalize(v: Quaternion = this): Quaternion
    fun toMatrix(out: Matrix3D = Matrix3D()): Matrix3D
    fun inverted(out: Quaternion = Quaternion()): Quaternion

    operator fun times(other: Quaternion): Quaternion
    fun transform(vec: Vector3D, out: Vector3D = Vector3D()): Vector3D
}

BVH

N-dimensional Bounding Volume Hierarchy implementation

class BVH<T> {
	data class IntersectResult<T>(val intersect: Double, val obj: Node<T>)
}

BVH2D

A Bounding Volume Hierarchy implementation for 2D. It uses Rectangle to describe volumes and Ray for raycasting.

open class BVH2D<T>(val allowUpdateObjects: Boolean = true) {
    val bvh = BVH<T>(allowUpdateObjects = allowUpdateObjects)
    fun intersectRay(ray: Ray, rect: Rectangle? = null): BVHIntervals?
    fun envelope(): Rectangle
    fun intersect(ray: Ray, return_array = fastArrayListOf()): FastArrayList<IntersectResult<T>>
    fun search(rect: IRectangle, return_array = fastArrayListOf()): FastArrayList<BVH.Node<T>>
    fun insertOrUpdate(rect: IRectangle, obj: T)
    fun remove(rect: IRectangle, obj: T? = null)
    fun remove(obj: T)
    fun getObjectBounds(obj: T, out: Rectangle = Rectangle()): Rectangle
    fun debug()
}

fun BVHIntervals.toRectangle(out: Rectangle = Rectangle())
fun IRectangle.toBVH(out: BVHIntervals = BVHIntervals(2)): BVHIntervals
fun Ray.toBVH(out: BVHIntervals = BVHIntervals(2)): BVHIntervals

BVH3D

A Bounding Volume Hierarchy implementation for 3D. It uses AABB3D to describe volumes and Ray3D for raycasting.

open class BVH3D<T>(val allowUpdateObjects: Boolean = true) {
    val bvh = BVH<T>(allowUpdateObjects = allowUpdateObjects)
    fun intersectRay(ray: Ray3D, rect: AABB3D? = null): BVHIntervals?
    fun envelope(): AABB3D
    fun intersect(ray: Ray3D, return_array = fastArrayListOf()): FastArrayList<BVH.IntersectResult<T>>
    fun search(rect: AABB3D, return_array = fastArrayListOf()): FastArrayList<BVH.Node<T>>
    fun insertOrUpdate(rect: AABB3D, obj: T)
    fun remove(rect: AABB3D, obj: T? = null)
    fun remove(obj: T)
    fun getObjectBounds(obj: T, out: AABB3D = AABB3D()): AABB3D?
    fun debug()
}

fun BVHIntervals.toAABB3D(out: AABB3D = AABB3D()): AABB3D
fun AABB3D.toBVH(out: BVHIntervals = BVHIntervals(3)): BVHIntervals
fun Ray3D.toBVH(out: BVHIntervals = BVHIntervals(3)): BVHIntervals